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ABSTRACT 

We give a new proof of a theorem of Nagata and Mukai/Sakai about  line 

subbundles of high degrees of vector bundles on curves. The main tool is 

the Fourier-Mukai t ransformation on the Jacobian of the curve. 

1. I n t r o d u c t i o n  

Let k be an algebraically closed field and let C/k be an irreducible smooth 

projective curve of genus g. For a vector bundle g over C we consider its Eu- 

ler characteristic \ ( $ )  := dimk H°(C,  g) - dimk HI(C, $). The Riemann Roch 

theorem gives a formula ' t(g) = rank(g)(1 - g) + deg(g). Then we have the 

following t h e o r e n l  o f  )~/[ul,:ai a n d  S a  "lkai ( [M-S]) :  

THEOREM 1.1 (Nagata, Mul~i/Sakai): Every vector bm~dle g over C with 

• ~(c c) > - g  contains a line bm~dle ofnonnegative degree. 

The case rank(g) = 2 was first proved by Nagata  [Na]. Later on, Mukai 

and Sakai proved the general result using Grothendieck's Quot-scheme as an 

important  tool. Actually, they proved a more general result about the existence 

of subt)undles of high degree. 

We give another proof of this theorem using the Fourier Mukai transformation 

on the Jacobian of the curve. 
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2. F o u r i e r - M u k a i  t r a n s f o r m  

We start with some notation and recall the definition and main properties of the 

Fourier-Mukai transformation on abelian varieties. 

Let X be a g-dimensional abelian variety and )(  its dual abelian variety. The 

product X × X carries a normalized Poincar6 bundle 7). Here "normalized" 

means that both 7)lx×{0t and 7)]{0}×X are trivial. We call prl resp. pr2 the 

projection to the first resp. second factor. We denote by D(X) the derived 

category of the category of Ox-modules, and Dboh(X) its full subcategory con- 

sisting of complexes with bounded, coherent cohomology. For a complex A we 

define A[n] to be the complex shifted by n to the left, i.e. A[n]~ = A~+n. Let 

m: X × X -+ X be the group law on X, prx and pr2 the projections. For Ox- 
r *  r *  modules 5 and 6 we have the "exterior" tensor product P [] G := p 1~ Q p 2~ 

and the Pontrjagin product ~- • 6 := m,  ( ~  [] 6). Then * is a bifunctor from 

Mod(X) × Mod(X) -~ Mod(X).  We denote its derived flmctor by n • . Building 

iterated products .~*~ := 9 r , n . .  ,n F and S "~  := F ~ . - .  [] F (r-times) we have 

isomorphisms 9 r*~ ~_ Rm,($ 'Nr) .  Again m: X r --+ X denotes the group law. For 

morphisms f :  X1 ~ IQ, g: X2 -+ ~ and Ox,-module if,  Ox2-module ~, there 

is a Kiinneth formula: R ( f  x g ) , (Y  [] 6) = Rf , (9  r)  [] Rg, (6) .  The translation 

by a k-rational point x is denoted by Tx. 

We define the functor R S  from Dboh(X) to Dbcoh(2) by 

L • ? P~(? )  = apr2,(pr 1 (.) (~ 7 )) 

and also the functor l ~  from Dboh(X) to Dboh(X) by 

L 
1 ~ ( ? )  = Rprl,(pr~(?) (9 7)). 

They are called the Fourier Mukai and inverse Fourier-Mukai transform, respec- 

tively. 

We list the main properties of the Fourier-Mukai transformation ([Mu]): 

(a) R S o  R $  ~ ( - 1 x ) * [ - g ] ,  P ~  o R g  -~ ( - 1 2 ) * [ - g  ]. 

In particular, R S  and P ~  define equivalences of categories. 
L L 

(b) RS(J= ,R 6) -~ m~(J:) O m~(6), m~(Y O 6) -~ m~(J:) ,R p~(~)[g]. 
L L 

(c) P ~ o T ;  ~_ (? @ 7)_~)oRS, mSo (? ~ 7)~) ~_ T; oRS.  
Iterating the isomorphism in (b) we get an isomorphism R S ( 5  *~) ~_ R $ ( F )  ° ' .  

Going through the proof of identity (b) ([Mu], p. 160), one checks that this 

isomorphism could be chosen to commute with the natural permutatibn operation 

of the symmetric group S~ on both sides. 
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The following lemma is certainly well known. 

LEMMA 2.1: Let £ be a non-degenerate Iine bundle on X .  Then its Fourier 

Mukai transform is a shifted vector bundle, i.e. there is a vector bundle Y on ~ 

and an integer n with R S ( £ )  -~ V[n]. 

Proof: By the vanishing theorem the cohomology H*(X ,£ )  vanishes in all 

degrees but one, called the index, for which it is nonzero ([Mum], 150). Prom the 

Riemann Roch theorem and an "index theorem", it follows that  this index i0 and 

the dimension of H i° (X, ~) depend only on the image of £ in the N~ron Severi 

group ([Mum], p. 150 and p. 155). By base change theorems R i S ( £ )  vanishes 

for i ¢ i0 and R~°S(£) is locally free (e.g. [Mum], §5). | 

3. P r o o f  of  t h e  t h e o r e m  

Let .4 be the Albanese variety of C. Fixing a closed point on C we get an 

embedding i: C ~-+ .4. This embedding induces an isomorphism of their Picard 

varieties of algebraically trivial line bundles: i*: .4--% Pic°(C). Fourier Mukai 

transformation gives an equivalence of categories RS: Dboh (.4) -+ Dbcoh (Ric o (C) ). 

Note that  the complex R$( i ,g )  has nontrivial cohomology only in degrees 0, 1. 

Before we study this complex in more detail we need a preparation. We denote 

by ~-g: C ~ --+ .4 the restriction of the group law. 

PROPOSITION 3.1: For any integer r > 0 we have (i ,g) *~ ~_ R ~ , ( g N ~ ) .  

Proof: Let i~: C ~ ~-+ `4~ be the product of copies of i. By the Kiinneth formula 

we have (i ,g) N'" ~- (i~),$ a ' .  Applying R m ,  gives the claim. | 

Proof of Theorem 1.1: Assume that  tile theorem is false. Then H°(C ,£  ® ~ )  

= {0} for all closed points 2 C Pic°(C) and d i m k H l ( C , £  Q P~) = - X ( £ )  is 

independent of 2. In particular~ X(g) _< 0. Applying base change theorems we 

get that  V := R1S(i ,£)  is a vector bundle of rank r := - X ( £ )  and that  R°S( i ,£ )  

vanishes, i.e. RS( i ,£ )  = V[-1]. For r = 0 we have V = 0. Since R S  is an 

equivalence of categories this implies i ,£  = 0, a contradiction. Therefore, in the 

following we assume r > 0. We define a locally free sheaf 7/ by the following 

exact, sequence: 

0 -4 7 / - 4  V @~" -+ det V -4 0. 

Note that  the symmetric group S,. acts on all these vector bundles by permuting 

the tensor factors and that  e := ~ e . %  sign(a)a  induces the zero map on 7/. 
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Applying R * S  we get a long exact sequence 

• -. --~ Rm,~(H[-r])  -+ R'*,~(Y°~'[-r]) --+ Rm,~(det F [ - r ] )  --+ . . . .  

By property (b) we know RS(( i ,E)  *r) ~_ 12°r[-r]. Hence by property (a) and 

Proposition 3.1 we have for the middle term of the above sequence 

Rmg(V~"[ - r ] )  ~_ H '~( ( - l~)*( ( i ,g )*~) [ -g] )  _~ ( - l ~ ) * R m - g m , ( g N r ) .  

Taking m = g in the above sequence we get 

RgS(~ [ - r ] ) - -+  ( - l ~ ) * r ~ , ( g  ~ )  4 RgS(det)2[-r] ) .  

We will prove the following two properties for the map ¢: 

CLAIM i: 0¢ O. 

CLAIM 2: The target space ore, i.e. RgS(det  ]?[-r]), is locally free. 

Since we are assuming r < g, the generic fibre of (--1A)*i-g,~ ¢Nr is zero. Hence 

there is no morphism to a locally fi'ee sheaf but the zero map. This is a contra- 

diction to our claims. 

Proof of Claim 1: The summation map ~ :  C ~ -+ v4 factorizes through the 

symmetric product C (r) and the induced map C (') -+ .d is birational to its image 

W~'([Mi], Theorem 5.1). Therefore, there is a non-empty open subset U C_ W ~ 

such that ~ :  N - I ( u )  -+ U is an unramified Galois covering with Galois group 

S~. Note that any (Xl . . . .  , x~) E ~ - I ( U )  has pairwise distinct components. Let 

x = (Xl , . . . ,x~)  E ~ - I ( U )  and set y = ~ (x ) .  We get (m, (g  [] . . .  [] g))y = 

(~o~s~ gx~(~) ® "'" ® g~(~)- Obviously ( does not induce the zero map on these 

fibres. Since, on the other hand, e induces the zero map on Rgg(7-t[-r]) by 

functoriality, the map ¢ cannot vanish at fibres over U. Claim 1 follows. | 

Proof of Claim 2: For an appropriate a E A(k) the intersection U C/(a + C) 

is non-empty and open in a + C. By the proof of Claim 1 we know that the 

fibres of RgS(det  12[-r]) are non-vanishing at, all points in U. So the restriction 

of RgS(det  12[-r]) to the curve a + C has a non-vanishing generic fibre, say of 

rank R. Since the restriction map Pic°(A) -% Pic°(a + C) is an isomorphism, 
L 

every line bundle £ C Pic°(A)(k) with a ,~(det  12[-r])Q E -~ P ~ ( d e t  ]2J-r]) has 

to be of order at most R. In particular, there are only finitely many of them. 

Thus by property (c) det 12 is a non-degenerate line bundle. Then by Lemma 2.1, 

Rgg(det V[-r]) ~- Rg-rg(det V) is locally free, which is Claim 2. | 
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The proof given above obviously generalizes to higher dimensionM subvarietes 

of abelian varieties, but under heavy conditions. The author does not know about 

their value. To be more precise, I fornmlate the surface case, not attempting 

greatest generality (changing notation). 

THEOREM 3.2: Let  C be a smooth  irreducible proper surface with canonical lille 

bundle ~c ,  let £ be a vector bundle on C, let ,4 be an abelian variety and let 

i: C -+ A be a morphism.  I f  r := --~(£) > 0 we assume the following: 

(a) The induced map  i(r): C (r) -+ A is generically finite to its image. 

(b) The restriction map  i(r)*: P i c ° ( A )  -~ P i c ° ( C  (r)) has finite kernel. 

(c) 2 r <  dimA. 

Then there is a line bundle £ E P i c ° ( A )  such that  either H o m o c ( i * £ , £ )  # 0 or 

Homoc (g, i*£ O c~c) # 0. 

We note that  the conditions (a)-(c) imply that i is generically finite to its 

image and that A is isogenous to a factor of the Albanese variety of C. For the 

proof of Theorem 3.2 one modifies the proof of Theorem 1.1 in the following way: 

We substitute i ,£  by R i ,g .  This does not affect the further proof. For the proof 

of Claim 2 we remark that there is the concept of the determinant of a perfect 

complex ("Knudsen-Mumford determinant"). In particular, we can speak about 

the determinant of any coherent sheaf on a regular variety. In this situation and 

for a coherent sheaf Q of generic rank r and line bundle £ we have the formula 

det(Q@ £) = det Q® £o,-. We apply this to i(r)*Rgg(det V[-r]) ,  which has non 

zero generic rank. From this and assumption (b), Claim 2 follows. 
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