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ABSTRACT
We give a new proof of a theorem of Nagata and Mukai/Sakai about line
subbundles of high degrees of vector bundles on curves. The main tool is
the Fourier-Mukai transformation on the Jacobian of the curve.

1. Introduction

Let k be an algebraically closed field and let C/k be an irreducible smooth
projective curve of genus g. For a vector hundle &£ over C we consider its Eu-
ler characteristic \(£) := dimy H°(C,&) — dimy HY(C, ). The Riemann-Roch
theorem gives a formula \(€) = rank(£)(1 - g) + deg(€). Then we have the
following theorem of Mukai and Sakai ([M-S]):

THEOREM 1.1 (Nagata, Mukai/Sakai): Every vector bundle £ over C with
\(€) > —g contains a line bundle of nonnegative degree.

The case rank(£) = 2 was first proved by Nagata {Na]. Later on, Mukai
and Sakai proved the general result using Grothendieck’s Quot-scheme as an
important. tool. Actually, they proved a more general result about the existence
of subbundles of high degree.

We give another proof of this theorem using the Fourier—Mukai transformation
on the Jacobian of the curve.
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2. Fourier—-Mukai transform

We start with some notation and recall the definition and main properties of the
Fourier-Mukai transformation on abelian varieties.

Let X be a g-dimensional abelian variety and X its dual abelian variety. The
product X x X carries a normalized Poincaré bundle P. Here “normalized”
means that both P|y o} and P|{0}x)? are trivial. We call pry resp. pry the

projection to the first resp. second factor. We denote by D(X) the derived

b
coh

sisting of complexes with bounded, coherent cohomology. For a complex 4 we
define A[n] to be the complex shifted by n to the left, i.e. A[n]; = Ai4n. Let
m: X x X — X be the group law on X, pr; and pry the projections. For Ox-
modules F and § we have the “exterior” tensor product F ® G := priF @ priG
and the Pontrjagin product F + G := m,(F R G). Then * is a bifunctor from
Mod(X) x Mod(X) — Mod(X). We denote its derived functor by s Building
iterated products F*7 := F f ces f]—' and F" = FR..-RF {(r-times) we have
isomorphisms F*" o~ Rm, (F¥"). Again m: X” — X denotes the group law. For

category of the category of Ox-modules, and D? , (X) its full subcategory con-

morphisms f: X1 = Y1, ¢: X2 = Y, and Ox,-module F, Ox,-module G, there
is a Kiinneth formula: R(f x ¢).(F B G) = Rf.(F) R Rg.(G). The translation
by a k-rational point x is denoted by T5.

We define the functor RS from D? , (X) to Dt , (X) by

coh coh
L
RS(?) = Rpra. (pr(?) © P)

(X) to Dt (X) by

and also the functor RS from D? b h

coh
N L
RS(?) = Rpri.(pr3(?) © P).

They are called the Fourier-Mukai and inverse Fourier-Mukai transform, respec-
tively.

We list the main properties of the Fourier-Mukai transformation ([Mu]):

(a) RSoRS ~ (-1x)*[-¢l RSo RS =~ (~15)*[~g]-

In particular, RS and RS define equivalences of categories.

(b) RS(F ¥ G) ~ RS() S RS(G), RS(F & G) ~ RS(F) ¥ RS(@)lg]

() RSoT! =~ (2O P_,) oRS, RS0 (26 P;) = T} o RS,

Tterating the isomorphism in (b) we get an isomorphism RS(F*") ~ RS(F)“".
Going through the proof of identity (b) ([Mu], p. 160), one checks that this
isomorphism could be chosen to commute with the natural permutation operation
of the symmetric group S, on both sides.
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The following lemma is certainly well known.

LeEmMMA 2.1: Let £ be a non-degenerate line bundle on X. Then its Fourier—
Mukai transform is a shifted vector bundle, i.e. there is a vector bundle V on X
and an integer n with RS(£) ~ V[n].

Proof: By the vanishing theorem the cohomology H*(X, L) vanishes in all
degrees but one, called the indez, for which it is nonzero ([Mum], 150). From the
Riemann-Roch theorem and an “index theorem”, it follows that this index 7g and
the dimension of H% (X, £) depend only on the image of £ in the Néron—Severi
group ([Mum], p. 150 and p. 155). By base change theorems R*S(L) vanishes
for i # iy and R°S(L) is locally free (e.g. [Mum], §5). |

3. Proof of the theorem

Let A be the Albanese variety of C. Fixing a closed point on C we get an
embedding i: C — 4. This embedding induces an isomorphism of their Picard
varieties of algebraically trivial line bundles: z*: AS Pic(C). Fourier-Mukai
transformation gives an equivalence of categories RS: D%, (A) — DS_, (Pic®(C)).
Note that the complex RS(i,&) has nontrivial cohomology only in degrees 0, 1.
Before we study this complex in more detail we need a preparation. We denote
by m: C" — A the restriction of the group law.

PROPOSITION 3.1: For any integer r > 0 we have (i,£)*" ~ R, (€%).

Proof: Let i": C" — A" be the product of copies of i. By the Kiinneth formula
we have (i,£)¥" ~ (i"),£%". Applying Rm, gives the claim. |

Proof of Theorem 1.1: Assume that the theorem is false. Then H°(C,€& & P;)
= {0} for all closed points & € Pic®(C) and dimy HY(C,£ @ P;) = —x(£) is
independent of #. In particular, x(£) < 0. Applying base change theorems we
get that V := R'S(i.£) is a vector bundle of rank r := —\ (&) and that R%S(i,£)
vanishes, i.e. RS(i.€) = V[-1]. For r = 0 we have V = 0. Since RS is an
equivalence of categories this implies 7.& = 0, a contradiction. Therefore, in the
following we assume r > 0. We define a locally free sheaf H by the following
exact sequence:
0—=H-=>VO 5 detV —0.

Note that the symmetric group S, acts on all these vector bundles by permuting
the tensor factors and that € := ) ¢ sign(o)o induces the zero map on H.
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Applying R*S we get a long exact sequence
- = R™S(H[-r]) = RSV [—r]) = R™8(det V[—1]) — - - -

By property (b) we know RS((i.€)*") ~ V"[-r]. Hence by property (a) and
Proposition 3.1 we have for the middle term of the above sequence

R™ SV [=1]) 2 H™ (14" (1))~ g]) = (1) R™ 977, (£%),
Taking m = g in the above sequence we get
RIS(H[-r]) = (~14)* . (%) 3 RIS(det V[-1)).

We will prove the following two properties for the map ¢:

Cram 1: ¢ # 0.

CraIM 2: The target space of ¢, i.e. R9§(det V[-r]), is locally free.

Since we are assuming r < g, the generic fibre of (—14)*m.E®" is zero. Hence
there is no morphism to a locally free sheaf but the zero map. This is a contra-
diction to our claims.

Proof of Claim 1: The summation map m: C” — A factorizes through the
symmetric product C") and the induced map C") — A is birational to its image
W7 ([Mi], Theorem 5.1). Therefore, there is a non-empty open subset U C W
such that 7m: m~'(U) — U is an unramified Galois covering with Galois group
S,. Note that any (xy,...,2,) € m 1 (U) has pairwise distinct components. Let
z = (x1,....2,) € M YU) and set y = m(z). We get (M (ER---RE))y =
Docs, €y @ @ Ex,y,,- Obviously e does not induce the zero map on these
fibres. Since, on the other hand, e induces the zero map on RIS(H[-r]) by

functoriality, the map ¢ cannot vanish at fibres over U. Claim 1 follows. |

Proof of Claim 2: For an appropriate a € A(k) the intersection U N (a + C)
is non-empty and open in a + C. By the proof of Claim 1 we know that the
fibres of RS (det V[—r]) are non-vanishing at all points in U. So the restriction
of Rgg(det V[-r]) to the curve a + C has a non-vanishing generic fibre, say of
rank R. Since the restriction map Pic®(A) = Pic(a + C) is an isomorphism,
every line bundle £ € Pic®(A)(k) with RS(det V[—r]) SC RS(det V[—7]) has
to be of order at most R. In particular, there are only finitely many of them.
Thus by property (c) det V is a non-degenerate line bundle. Then by Lemma 2.1,
RIS (det V[—r]) ~ R9~"8(det V) is locally free, which is Claim 2. |
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The proof given above obviously generalizes to higher dimensional subvarietes
of abelian varieties, but under heavy conditions. The author does not know about
their value. To be more precise, I formulate the surface case, not attempting
greatest generality (changing notation).

THEOREM 3.2: Let C be a smooth irreducible proper surface with canonical line
bundle w¢, let £ be a vector bundle on C, let A be an abelian variety and let
i: C' — A be a morphism. If r := —x(€) > 0 we assume the following:

(a) The induced map i": C") — A is generically finite to its image.

(b) The restriction map i")": Pic®(A) — Pic®(C™)) has finite kernel.

{¢) 2r < dim A.
Then there is a line bundle £ € Pic®(A) such that either Homp (i*£,£) # 0 or
Home,. (€,i*L ® we) # 0.

We note that the conditions {a)—(c) imply that ¢ is generically finite to its
image and that A4 is isogenous to a factor of the Alhanese variety of C. For the
proof of Theorem 3.2 one modifies the proof of Theorem 1.1 in the following way:
We substitute ¢,& by Ri,£. This does not affect the further proof. For the proof
of Claim 2 we remark that there is the concept of the determinant of a perfect
complex (“Knudsen-Mumford determinant”). In particular, we can speak about
the determinant of any coherent sheaf on a regular variety. In this situation and
for a coherent sheaf Q of generic rank r and line bundle £ we have the formula
det(Q® L) = det Q@ L. We apply this to i "RIS(det V[—r]), which has non
zero generic rank. From this and assumption (b), Claim 2 follows.
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